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Internet Rack Monitor software is a large topic that has been described via numerous detailed docu-
ments available on the Web. This document is meant to help introduce the IRM software to those in-
terested in learning how the system operates.

The features included in IRM software can be divided into the following categories:

General
System tables
Clock events
Data pool processing
Device control support
Local application support
Alarm handling
Page application support
Network support
Diagnostics

There are many relationships between these categories. System tables support many of the other fea-
ture categories. Network protocol support accesses the data pool and can effect device control. Alarm 
handling compares data pool values with reference values in system tables. Page and Local applica-
tions reference and modify the data pool. Diagnostics assists in debugging and monitoring the health 
and configuration of the entire system.

General—Characteristics
IRM software is designed as a front end that operates in real time, performing all its assigned 

tasks at 10–15 Hz, according to a synchronizing external clock interrupt. A number of IRMs, con-
nected via the network, comprise a project, all nodes synchronized to perform their tasks together. 
Each node is thus one part of a distributed control system. All nodes run identical system software, so 
that all features are supported by all nodes.

General—Hardware
Each IRM includes a MVME-162 CPU board with 25 MHz M68040 CPU, 4 MB RAM, 1 MB 

ROM, 1 MB flash memory, 0.5 MB non-volatile RAM, two serial ports, ethernet controller, VMEbus 
interface, and four sockets for IndustryPack boards. One IP socket contains a digital board, required 
in each IRM, that connects via an off-board digital interface to 8 bytes of digital I/O (via four connec-
tors) and also decodes a "Tevatron clock" signal to derive the synchronizing 10–15 Hz interrupt that 
drives the system's cyclic operation. This same board can also support a second 8-byte digital inter-
face card, if needed. Another IP socket connects via an off-board analog interface to 64 channels of 1 
KHz A/D (via four connectors) and 8 channels of D/A (via two connectors). Two IP sockets are then 
available for other boards, such as an 8-channel timer, a Swift digitizer that provides 8 channels of 
clock event-triggered waveform data captured at rates of  up to 800 KHz, a Quicker digitizer (that 
provides 8 channels of event-triggered waveform data captured at rates of up to 10 MHz), or even an-
other 64-channel 1 KHz A/D analog board. 

Connectors at the rear of the IRM are for the 64 A/D signals, the 8 bytes of digital I/O, the 8 D/A 
channels, the Tevatron clock, and the ethernet network. When additional IP boards are used, addi-
tional rear panels provide the appropriate connectors.

At the front of the IRM is a diagnostic software test points connector, 8 LEDs, 8 option switches, two 
serial port connectors, and the CPU board reset and abort switches. The test points connector, suitable 
for use with a logic state analyzer, includes signals that monitor the timing activity of 14 tasks and 10 
interrupts. Eight of the interrupt signals also appear visually on the LEDs.



The CPU board occupies one slot of a 3-slot VMEbus crate inside the IRM chassis. The CPU board 
alone has been enough to support the IRMs installed so far. In fact, it was the greatly increased func-
tionality provided by the 162 CPU board that enabled the IRM single-card concept to take shape. 
(Previous VME incarnations required 4–5 boards per node.)

General—Synchronization of tasks
An interrupt from the digital IP board, set to occur at a delay from a selected clock event, is 

used to wake up the Update task to begin each cycle's activity. Update first interprets the list of bi-
nary commands in the Data Access Table to update the data pool. Many possible commands can ac-
cess and modify data from various hardware interface types. One command copies out the latest set 
of 64 A/D readings from the IP board memory into the data pool. (The IP board digitizes all 64 chan-
nels at 1000 Hz, so there is no waiting for the digitization process to take place; the analog signals 
have already been digitized and stored even before the cycle interrupt occurred.) The 8 bytes of digi-
tal data are read from the digital IP board. Modify commands adjust the data pool values as needed 
for the devices connected to that particular node. Another command causes each enabled local appli-
cation to be invoked to perform whatever functions are needed for the present cycle. Each local appli-
cation maintains its own context for as long as it is active, which is usually as long as the IRM is pow-
ered on and the system is running. In this way, local applications are a kind of catch-all solution that 
allows support of anything not covered by the usual built-in Data Access Table commands.

After the data pool has been updated for the present cycle, the Update task builds reply messages for 
all non-server-mode data requests that are due on that cycle and queues them to the network. The 
linked list of active requests is maintained in order of requesting node so that multiple replies des-
tined for the same node can be combined into common frames to increase network utilization effi-
ciency.

When the Update task finishes its work, the Alarms task scans all analog channels and all digital bits 
in the data pool for changes of alarm state (good/bad) and builds any change-of-state messages for 
prompt delivery to an alarm target node#, usually an IP multicast network address.

Upon completion of the alarm scan, the Page Application task invokes the active page application. It 
may update its virtual screen, for example, which may be viewed by other nodes via the "Page G" con-
nection, described later. A page application maintains a a simple 16-line by 32-character virtual user 
interface in lieu of a command line interface.

Besides the three tasks above, additional activities that may occur during the cycle include various 
kinds of network communication. Network messages may be received at any time. A one-shot data 
request results in an immediate reply without waiting for the next cycle.

At 40 ms beyond the start of the current cycle, any server-type replies are updated and queued to the 
network. A server-type request is one that requests data to be retrieved from one or more other nodes. 
Each node contributing to such a request will, of course, deliver its replies to the server node early in 
the cycle as soon as its own data pool has been updated; thus, 40 ms represents a kind of deadline by 
which time such contributing replies must be received by a server node so that they can be put to-
gether and delivered to the original requesting node. In this way, the composite reply includes corre-
lated data that was measured at the same time across a number of nodes in the network. It is for the 
purpose of being able to provide correlated data in replies that all nodes are operated by a synchro-
nous timing signal.

The following schematic illustrates the sequence of activities that occur each 10 Hz cycle.
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In this diagram, the relative execution times shown are not to scale. Typically, the times for perform-
ing the activities shown are much shorter. Viewing the real times can be done via the task activity sig-
nals on the test points connector on the IRM front panel, or by accessing the task activity internal log.

System tables—Introduction
Most system tables are placed in non-volatile memory, so that their contents survive resets 

and power outages. Many tables included device-related data, either for analog channels or digital 
bytes. The key to an analog channel is a channel#, usually in the hexadecimal range 0000–03FF. The 
key to digital data may be a byte# or a bit#. Byte#s usually range from 0000–007F, and bit#s corre-
spondingly range from 0000–03FF. A key is a index into system tables that are organized as arrays 
of records. A system table directory occupies the first part of the non-volatile memory, wherein each 
table is characterized by its base address, its number of records, and the size of each record.

System tables—Analog channels
Characteristics of an analog channel, as known via its channel# key, depend upon values held 

by the relevant system tables in the channel#-indexed records. For example, a channel# key refer-
ences a 6-character device name, 4-character scaled units text, linear scaling constants for reading and 
setting, and specifications for analog control and related digital status and control. Having this infor-
mation in a local database allows support of meaningful page applications, encoded alarm messages, 
and local applications that perform their logic in scaled units. It also permits a given control system 
implementation to operate without recourse to any particular commercial database. Details of the 
form of control associated with an analog channel need only be stored locally. 

An analog channel may be both readable and settable, even though different hardware is involved in 
providing data readings versus control settings. For example, a magnet power supply controlled by a 
D/A produces current that passes through a magnet. The current is measured by a transducer. The 
channel's reading gives the present value of the current; the channel's setting, in the same scaled 
units, gives the expected value of the current according to the accuracy of the scaled constants used 
for setting. If the reading of the channel is 52.3 amps, but it is desired to set it to 60 amps, the scaled 
constants for setting are used to derive a D/A value to be sent to the power supply; the scaled con-
stants for reading interpret the transducer's digitized value to derive a value of the current. If this re-
sult is 61.1 amps, then the scaled constants for setting may be slightly inaccurate. The reading is 61.1 
amps, to the accuracy of the scaled constants for reading. If 60 amps is needed, the D/A setting should 
be adjusted a little until the reading shows 60 amps. The low level software does not iterate on such 
control actions. If such iteration is desirable in particular cases, it can always be handled via a local 
application, in which the setting would control a dummy value that the local application monitors, 
adjusting the D/A output voltage as necessary until the A/D reading matches within some desired 
error band. Often, control actions for such devices are made by manual tuning, so the whole matter 
isn't an issue. One observes the reading of the power supply as one adjusts the D/A incrementally, 
stopping when the reading appears satisfactory—or when some other condition is reached, such as 
maximum accelerator beam intensity downstream of the magnet. It is the reading value that is mean-
ingful. The setting value is only that value which produces the reading value, even when the scaled 
constants for setting produce a value different from the reading value.
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Populating analog device-related tables can be done easily via the Analog Page application. In a large 
control system that uses a central database, it may be desirable to download central database changes 
to insure that the two databases track. It is important that they do track, because the detailed means of 
controlling an analog channel most immediately depends upon the values in the front end database, 
not those stored in a central database record. When a host computer issues a setting to an analog 
channel, it specifies the channel# key and the data to be sent; it does not specify the details of how the 
setting will be performed, what hardware will be addressed, what multiplex selection, etc.

Commands placed as entries in the Data Access Table determine how an analog channel obtains an 
updated reading. A single command may affect a range of channels, such as that which copies 64 
readings from the IRM A/D hardware memory into the data pool, indexed by the channel# key. An 
analog channel's setting value, the last value sent to the hardware, is also maintained. This allows 
support of incremental (knob) control that can permit multiple user access, in that each user's incre-
mental actions accumulate in a rational way to produce the result received by the hardware. Of 
course, multiple user control may not be desired by administrative fiat, but at least this scheme per-
mits it to work sensibly. Another use for the setting values is to allow a host to save machine condi-
tions for later recall. The other reason for the last setting values occurs at system reset time, when the 
setting values for all controllable analog channels are refreshed to the hardware D/A's. This is done 
because a reset may occur following a power outage, when D/A hardware register contents are lost.

Each analog channel may be enabled for alarm scanning, so that a nominal (reference) value and tol-
erance (dead band) may be defined. The Alarms task performs the scanning of each channel every cy-
cle, emitting an alarm message for each alarm state change. A count of alarm state transitions is also 
maintained for diagnostic use. For a node that is configured for 1024 channels and 1024 bits, but with 
none enabled for alarm scanning, the scan takes about 0.1 ms. With 100 channels enabled, the scan 
time is about 0.5 ms.

System tables—Digital bytes
Digital status/control is organized into bytes, so that the key is a byte#. Each byte has an asso-

ciated table entry that includes its reading value. One Data Access Table command refreshes all digi-
tal byte readings in the data pool. Each byte includes 8 bits, each of which can be referenced via a bit# 
key, so that 1024 bit#s map into 128 byte#s. Each bit# key references a 16-character title, and each bit# 
can be enabled for alarm scanning by the Alarms task. One can also build composite status 16-bit 
words, and treat each word as a digital status word to be included in the "analog" alarm scan. In that 
case, such channels are scanned using a nominal bit pattern and mask logic.

Digital status/control references can also be related to an analog channel. This allows a magnet 
power supply channel to exhibit on/off status, interlock status, and allow on/off and reset control ac-
tions. The key can be a channel# that, via the analog system tables, refers to specific bit#s. The type of 
digital control needed is also indicated there, whether it is a d.c. level, a pulse, or a pair of pulses.

System tables—Pages
Each display page is supported by a page application as specified in the page tables. Each 

page has an associated file name, a 16-character title, and a dedicated 128-byte table entry that is used 
to save parameters that are needed upon display call-up. The Memory Dump Page application, for 
example, retains 8 node#s and addresses so that the next time it is invoked, the display reflects the 
saved parameter values. Another field supports the automatic invocation of a page application based 
upon periodic calendar time. For example, a page application might be called once a day, say, to col-
lect some statistics and print out a formatted summary via the serial port.

System tables—Files
Another set of system tables supports a non-volatile memory-resident read-only file system. 

(Here, read-only means that one must rewrite an entire file to make even a small change.) Page appli-
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cations and local applications are the most common files stored here. Each program is compiled and 
downloaded separately from the system code. When such a program is first initialized, its checksum 
is checked to insure that the non-volatile copy has not been corrupted, and the contents of the file are 
copied into allocated dynamic memory for execution. As a result, new versions of such code files can 
be downloaded even when the program is active. For local applications, when downloading one of 
the same name as one currently in execution, an orderly switch to the new version takes place as soon 
as downloading is complete. (For page applications, one must recall the page to make the switch.) Be-
cause local application enable bit values are kept in non-volatile memory, the same set of local appli-
cations are enabled following a reset of the node as the set that was enabled when the node was last 
running. In this way, local applications operate as an extension of the system code, even though they 
are separately maintained.

Local applications to be run via a special command in the Data Access Table, usually near the end, are 
registered in the LATBL system table. Each entry retains a set of 10 parameters that are passed to the 
local application when it is invoked, where the first one is always the enabling bit#. Setting the enable 
bit# activates the local application to be called every cycle. The first call is an initialization call that al-
lows the application to allocate memory to maintain its context across calls. A pointer to this memory 
is also passed to the application each time it is called. When the enable bit# is turned off, a final call is 
made to the application, allowing it to release its context memory and generally "clean up its act." For 
example, one might have an LA that performs a closed loop function. If more than one device needs 
the same closed loop support, multiple instances of the LA are set up; each shares the same copy of 
the allocated executing code, but each has its own set of parameters and its own context memory.

System tables—Network
Several system tables help support network activities. One table contains a network connec-

tion table that associates internal message queues and protocol handler tasks with UDP port#s or Ac-
net network task names. In order to provide Internet Protocol support, an ARP table is needed to hold 
physical addresses for active Internet nodes, plus a list of active UDP port#s for each such node. Via 
this table, a UDP socket can be encoded into a 16-bit "pseudo" node#. Another table keeps a list of IP 
networks/hosts that are allowed setting access. Whenever a setting message is targeted to the node, it 
is denied if the source IP address does not find a match in this table. The TFTP server also checks this 
table before accepting a write file command. 

Another table caches replies from the Domain Name Server that are needed to target nodes identified 
by a 16-bit node#. A local application called DNSQ maintains this table. Each IRM node is registered 
with the local DNS as nodexxxx, where xxxx is the hexadecimal value of the node#. For example, 
the IRM known at Fermilab as node# 0509 has the Internet name node0509.fnal.gov. Another 
network table is used to hold IP addresses of Acnet nodes, since they do not use the DNS scheme.

System tables—Data streams
The IRM system provides formalized support for circular buffers known as data streams. One 

standard system data stream is used for network frame diagnostics, where information about each 
network frame that is received or transmitted is recorded, including the node#, the frame size, a 
pointer to the frame buffer, and the calendar time that the frame was received or transmitted with a 
resolution of milliseconds from the start of the current cycle. Another system data stream is used to 
record setting commands as a diagnostic aid. Data stream queues are established in volatile memory 
during system initialization according to the parameters found in the non-volatile data stream table. 
Additional data stream queues may be used to record Acnet errors reported by a server node, TFTP 
protocol activity, Tevatron clock events, task activities, Acnet alarm message communications, Acnet 
RETDAT request activity, and interrupt routine timing.

Clock events
The Tevatron clock system was designed for use at Fermilab to carry up to 256 synchronizing 

clock signals to all parts of the accelerator. Each 8-bit event# is encoded onto a 10 MHz serial carrier 
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signal. This clock system technology is quite portable and has been found to be useful at other labs.

Hardware support for clock event decoding is included in the digital IP board that is a required part 
of an IRM configuration. An interrupt is generated for each clock event, and a 32-bit microsecond 
counter—part of the 162 board hardware—is read and recorded for that clock event, along with the 
elapsed time since the last such event. A 256-bit array is maintained that shows all the events that 
have occurred since the last cycle. If desired, interrupts may be masked from particular known high-
rate events that are of no local interest. By sampling the clock event bit array, clock events can be used 
to influence Data Access Table command processing as well as the logic in various local applications. 
Classic protocol can return replies based upon whether a selected event occurred since the last cycle. 
The time to process each clock event interrupt is about 15 microseconds.

The Clock Events Page application shows the clock event activity experienced by any IRM node. It 
shows the average events/second rate, a histogram of the occurrence of single and multiple events, 
the activity of all clock events on a cycle-by-cycle basis, and for a selected event, its count, delta tim-
ing, and timing of its occurrence relative to the node's own cycle interrupt.

Data pool processing
Much of a system's device configuration is defined via the contents of the Data Access Table, 

introduced in the General—Synchronization of tasks section. The entries of this table are the commands 
that are interpreted early in each cycle by the Update task. A sequence of commands may be condi-
tionally executed each cycle, every "n" cycles, or depending upon the reading of a specified bit# or 
analog channel#. Planning the contents of the DAT is done with some care. The end result is a list of 
commands that refresh the data pool. The Update task performs the interpretation of this table, dur-
ing which time no other tasks can run, so that the entire data pool appears to update instantaneously; 
it is not possible for a network data request message to be received that retrieves values from the data 
pool at a time when it is only partially updated for a given cycle. This is done to ensure support of 
correlated data across multiple channels and bits and across multiple nodes.

Examples of DAT commands are as follows:
Copy from IRM A/D memory
Refresh digital data pool from byte address table
Copy from memory words/bytes
Perform addition, subtraction, multiply, divide of analog channel data
Pedestal subtraction depending on beam status
Derive cycle count since event/bit
RF detector diode linearization
De-multiplex data words/bytes
Copy memory into data stream
Format status words from selected bytes/bits
Capture all readings in present cycle
Invoke all enabled local applications

The last one listed is the catch-all command that provides for many specialized data pool updating 
needs. As an example, a PLC controller was purchased to interface to vacuum hardware. It supports a 
serial RS-232 connection using a specified protocol. A local application was written that is called not 
only every cycle, allowing for timeout logic, but also for every line of text received via the serial port. 
(There was too much data to access all of it every cycle, but that limitation was accepted once the 
serial-interfaced controller was selected.) It updates all such data every 2–3 cycles, and it sends out a 
setting command, if necessary, between updates. After this data becomes part of the data pool, it 
takes on all the built-in support granted analog channels and digital bytes.

No matter the source of the data in the data pool, it all looks the same once the data pool is updated. 
This greatly simplifies alarm scanning and updating of data replies. The commands for updating the 
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data pool are designed to be executed efficiently, since this work is done every cycle, 24 hours/day. 
For example, one command updates all 64 consecutive analog channels from the A/D circular buffer 
memory on the analog IP board. If, instead, a database entry for each analog channel specified a data 
source field from which the value is to be copied, it would take much longer to update the 64 channel 
reading values. Also, it may be more difficult to ensure correlation between channels, as the A/D is 
always active. Array processing greatly increases efficiency. The IRMs used in the Fermilab Booster 
HLRF system finish execution of all DAT commands, including all enabled local applications, by 3 
milliseconds into each cycle.

Device control support
This topic was earlier addressed in the section System tables—Analog channels. Many kinds of 

analog control device types are supported, each specified via an analog control type#. Those typically 
used with IRMs are as follows:

00: No control
02: Motor
05: Memory word (8-bit writes)
0A: Memory word (16-bit write)
0C: Unsigned 12-bit D/A
10. Memory byte (single byte no shift)
11. Memory byte (single byte w/ shift count)
12. Same channel reading word w/mask
15. IRM D/A with offset and 4-bit right shift
16. IRM D/A with offset but w/o right shift
17. Unipolar 15-bit D/A clamped at zero.
18. Unsigned 16-bit D/A or timer
19. PLC memory word via PLCQ message queue.

Most drivers are very simple accesses to memory with various formatting of the data word before it's 
actually written to a hardware register. The last one is more involved; it relates to an earlier example 
given for a PLC interface under the Data pool processing section, in which the interface is driven via an 
RS-232 serial port. To effect such D/A control, the command is passed through a message queue that 
is created by the DNET local application. When the local application has just completed a data acquisi-
tion, it checks the message queue; if a setting command is found there, it arranges to do the required 
serial transaction using the DirectNET protocol supported by the PLC controller. The serial transac-
tion is slow, but overall system operation is not delayed by it as the serial transaction is interrupt 
driven. The interrupt routine takes about 3% of the CPU time at 19.2K baud.

Local application support
Local applications provide extensibility of the IRM system as mentioned above under System 

tables—Files. The code for a local application is prepared as a Pascal procedure, or as a C function that 
returns void. The library uses a Pascal calling sequence convention, so it is convenient to use a C com-
piler that includes the pascal keyword to select this option. Such is provided by the C compiler 
available with either Apple's Macintosh Programmer's Workshop (MPW) or MetroWork's Code War-
rior development system. Each time the system invokes the local application, it passes two parame-
ters. The first is a call type number; the second is a pointer to a structure that includes the pointer to 
the static variables allocated during the LA's initialization call to retain its context while it is enabled, 
followed by the 10 words of argument values that allow particularization of the LA's actions. The first 
of the 10 arguments is always the enabling bit# that causes the LA to be active. One Data Access Ta-
ble command causes each LA whose enable bit is set to be invoked in turn. It also notices when an en-
able bit changes state. If it notices the bit just became set, it finds the code for the LA in the memory 
file system, evaluates its checksum to be sure the code has not been corrupted, allocates space for it in 
volatile memory, copies the code into this space, and invokes the code for the first time, specifying an 
initialization call type. The LA allocates a block of memory to maintain its execution context and de-
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posits the pointer to this block into the structure passed to it. In every subsequent call, the LA receives 
this pointer so it can remember what it was doing. Subsequent calls occur every cycle as long as the 
enable bit remains set. If the enable bit is reset, then a final termination call is made, during which the 
LA cleans up its act, releasing the memory that it allocated during the initialization call.

Besides the initialization, termination and cycle calls, an LA may also be called in response to receipt 
of a network message for which it has set itself as the handler. A simple example of such would be the 
UDP Echo Server LA. It initializes itself to receive all UDP datagrams addressed to port 7. When such 
a datagram is received, this LA is called with the network call type. The LA then echoes to the 
sender's UDP port# the same datagram. In this simple example, the cycle calls are ignored by the LA.

Another simple example of an LA would be one that adds the readings of two analog channels to pro-
duce a result that is assigned to the reading of a third channel. (As this function is already included in 
the built-in data access table type, it would be better to use that. This is only an example.) The LA 
would use three argument words, in addition to the enable bit#, that would be set to the three 
channel#s. Each time the LA receives a cycle call, it would get the reading of the first two channel# 
arguments, install the sum as the reading of the third channel# argument, and return.

Other examples of LAs are those used for closed loop applications, which can be simple or complex. 
One specific LA that is fairly complex supports the elaborate Acnet protocol used for Fast Time Plots 
and Snapshots, that known at Fermilab as FTPMAN. 

Another example is a Network Time Protocol client LA. Every so often, according to one argument 
value, it sends a network time request message to a destination network time protocol server node, 
specified by an IP address (that occupies two argument words). When the reply is received, the sys-
tem again invokes this LA to process it. The LA interprets the reply message and establishes the time-
of-day for the local system, optionally sharing such timely news by sending it to a target multicast 
node#, as specified by yet another argument word. In this way, the IRMs within one project can be 
kept in synchronization with respect to calendar time-of-day. Every minute, one IRM that runs this 
LA collects the time of day and shares it with the others. Between updates, each IRM is perfectly ca-
pable of counting its own time using its own crystal. This synchronization just protects against crystal 
differences and time lost due to power outage or when an IRM is reset.

When developing an LA, it is possible that a bug can cause an unexpected exception error to occur 
that causes the system to abort. If an abort occurs while executing the LA code, the enable bit for that 
LA is reset. As the IRM automatically reboots, the LA will be disabled, so that the abort will not recur.

A special page application called the Local Application Page provides convenient access to set up the 
arguments of a local application that are contained in entries of the LATBL. (In a sense, it is the user 
interface for all local applications that by definition have no user interface.) Each argument is shown 
with a keyword prompt and the name and value of any argument that is designated a channel or bit. 
Any such argument channel or bit value may also be set via this page application. It also monitors the 
present execution of the LA, showing the LA's version date and the address of the block of memory 
housing the execution context of the LA. Page applications are discussed later in this document.

In summary, LAs serve to add functionality and particularize a given IRM according to its unique 
needs. Each LA is separately compiled and downloaded to a specific IRM. The first time a version is 
downloaded via a TFTP client, it is stored in non-volatile memory, and the current time-of-day is 
used as a version date. When it is subsequently copied to another node, using the Classic protocol, the 
version date is retained. In this way, one can see whether a given IRM is running the latest version of 
an LA. If not, it can easily be updated by copying from a node that has the latest version. 

Alarm handling
Alarm scanning is performed every cycle by the Alarms task. All analog channels and all bi-
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nary bits that have been enabled for alarm checking are checked after the data pool has been updated 
and all active requests have been answered. Times for an IRM to do this job are less than 1 ms, with 
additional time required if alarm messages need to be formatted for delivery to the network. The 
usual method is to target Classic protocol alarm messages to a multicast node#, so that any node 
reachable in that way can "listen" to these alarm messages.

Analog channels can be scanned for having a reading value within a specified tolerance range of a 
nominal value. As long as the reading remains inside the tolerance window, the channel is in the 
"good" state. When its reading wanders outside the range, it enters the "bad" state. Once in the "bad" 
state, it must come within half of the tolerance range before it can be again considered "good." This 
hysteresis logic prevents alarm message chattering when a reading hovers near the tolerance window 
edge. (Min/max logic can also be employed.) Some analog channels can be specified as containing 
digital status information. Such channel readings are derived from collecting certain bit#s together to 
form a digital word whose alarm state is to be checked as a whole. In this case, the nominal value 
field is interpreted as a nominal bit pattern, and the tolerance word is interpreted as a mask of the bits 
that are to be checked. If all bits in the reading word match the nominal bit pattern within the mask, 
then the channel is "good," else it is "bad." In this way, one alarm message can be generated for all 
such bits indicated in the mask. It is a kind of digital alarm scan, but for up to 16 bits taken together. 
More recently, raw floating point channels can also be included in the analog alarms scan.

Binary bits can also be scanned as individual "devices." Each bit has an associated nominal state. If the 
present reading of the bit matches the nominal state, then the bit is "good," else it is "bad."

Whether an analog channel is checked, or a binary bit is checked, several options apply, according to 
the alarm flag bits associated with that channel or bit. Setting the "inhibit" bit will force a dedicated 
digital control line to be asserted as long as any so-marked channel or bit is in the "bad" state; this 
control line is normally used to inhibit beam. One may set a "beam" bit that enables alarm scanning 
for a channel or bit only on beam pulses. One may set a "silent" bit that inhibits sending an alarm mes-
sage when the alarm state changes; this option is used to merely keep a diagnostic count of alarm state 
changes without bothering the operators. One may require that an out-of-tolerance condition exist for 
1–16 consecutive cycles before declaring a device in a "bad" state, in order to filter noisy signals. 
While an up-to-16-cycle delay in reporting an alarm condition may not cause a problem for human op-
erators, there will also be such a delay before beam can be inhibited, in the case that the beam inhibit 
option is selected. One should therefore use this option with care.

One other type of alarm message is supported, that of "comment" alarms. There are only two of these 
available so far. One occurs following reset of an IRM. The other occurs when an IRM performs an 
"alarm reset," in which all good/bad bits are forced to "good," and devices that were "bad" at the time 
of the reset cause "good" messages to be emitted. An alarm reset action may be needed when a 
project-wide alarm manager is restarted. Of course, an alarm reset action is performed internally 
when an IRM resets.

It is also possible to inhibit the reporting of all alarm messages—except the bit that selects this option, 
so that one has a way of being reminded that an IRM is in this state. This option can be used as a de-
fensive tactic. With alarm scanning done every cycle, an IRM has the potential of emitting an enor-
mous number of alarm messages that could overwhelm an alarm handler, depending on its design.

Besides reporting alarm messages to the network, ascii-encoded alarm messages can optionally be 
printed out the local serial port. If it is desired to collect such alarm messages from all nodes in a pro-
ject, one can arrange to have one IRM enabled to receive the alarm messages that are multicast from 
all nodes in the project, then enable its serial output option. That IRM will then encode and print all 
alarm messages from all nodes in the project. Any that are generated by its own alarm scan, plus any 
that it receives from listening to the alarm multicast address, will be encoded for serial output. Stor-
ing such a serial stream in a host text file produces a simple alarm log for an entire project.
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Special support is provided for Acnet alarm reporting. A local application AERS is used to shepherd 
alarm messages in the Acnet format to the alarm handling process on a central Vax. IRMs that don't 
use Acnet simply omit this LA.

Page application support
Page applications are similar to local applications in that they are separately compiled and 

downloaded into the non-volatile memory file system. But a page application provides a user inter-
face, and only one page application can be active at a time. Through a page application's user inter-
face, one may switch to another PA via an index page that lists all PAs that are available. The index 
page also provides for assigning a page to a specified PA. There are 31 possible pages available for 
such assignment, numbered 1–9, A–V. The execution context for a page application is established 
upon initialization of the PA when it is first invoked, just as for LAs. But in place of arguments in a 
LATBL entry, there are 120 bytes of page-private data that allow the PA to preserve its context across 
separate call-ups of that page. Establishing values for this context is done via the PA's own user inter-
face. Often, a PA uses its page-private memory to retain enough context so that the page display ap-
pears the same when it is next invoked as it appeared when it was last active.

As for LAs, a PA receives an initialization call when it is first invoked from the index page. Each call 
specifies two parameters: the call type and a pointer to the page-private memory for that page. There-
after, it receives calls every cycle after alarm scanning has completed. When the user invokes a differ-
ent page, or returns to the index page, a termination call is made so the PA can clean up its act. In ad-
dition, a PA can receive a "keyboard interrupt" ("mouse click") call to initiate some action that is usu-
ally implied by the location of the cursor on the 16-line by 32-character page display.

Page applications were originally developed for use with a special hardware display and keyboard 
interface. But IRMs are not normally configured with this "little console" hardware that also requires a 
special Crate Utility VME board. Without this board, an IRM still supports the execution of page ap-
plications, but the 512-character display is maintained only in memory. A host computer that imple-
ments a "Page G" utility program can access this page memory and present it on a user's console. (The 
"Page G" label comes from its traditional assignment to that page on a "little console.") It monitors 
keyboard activity and sends appropriate settings to the IRM to make it think a character has been 
typed on its "little console," even though none exists. The host program emulates the "little console" in 
order to gain support of the functionality offered by the suite of available PAs. If two users, each with 
an emulator program, view the page display of the same IRM, then each sees the same display, and 
each can move the cursor and type on the display or initiate actions based upon same. This is some-
times a useful means of one user illustrating how to perform an action supported by a certain PA for 
a user in another office. Such "Page G" emulator programs have been written for the Macintosh, PC, 
Sun workstation, Vax, and IRM.

The software that runs in IRMs was originally developed in 1980. Only four PAs were available at 
that time, and all four still provide useful functionality. One is the Parameter Page that shows a user-
specified list of up to 14 analog channel readings and allows control of same. Each channel's reading 
value is updated about once a second with the average of the readings measured over the last 13 cy-
cles, preferentially using beam cycle readings, if any. Setting values and alarm nominal and tolerance 
values can be similarly viewed and controlled. To establish a parameter line, the user enters either a 
node# and channel#, or an analog device 6-character name. The name may either be from the local 
node, or from some other node in the project; in any case, the PA will learn its node# and channel#. 
To support a device name lookup data request for non-local names, the system multicasts a name 
lookup request, causing other IRMs in the project to search their own tables for a match; the IRM 
finding a match replies to the request. Name table search performance is enhanced via hashing.

The second original PA is the Analog Page. It allows configuration of a given node's analog channel 
database fields, including its name, descriptive text, units text, scale factors, analog control informa-

IRM Software Features p 10



tion, associated status/control bits, and alarm control flags. It can also print out the selected node's 
analog database or data pool via the local serial port. 

The third original PA is the Binary Page. It allows configuration of the descriptive text and alarm con-
trol flags for each binary bit in a given node. It also allows for digital control, either by the bit or by 
the byte. It can also print out this information via the serial port.

The fourth original PA is the Memory Dump Page that permits viewing 64 bytes of memory, eight 
bytes per line, either contiguous or from 8 independent addresses. The display is updated every cycle, 
so that one has a live window view of memory that has proven itself invaluable for diagnostics. One 
can also change the memory that is viewed, by the byte or the word, merely by typing over the value 
displayed and initiating the "keyboard interrupt" action. If the memory setting is successful, the new 
value is immediately refreshed.

From the beginning, page applications have been allowed access to devices or memory of non-local 
nodes via transparent use of the network. The Parameter Page can display local channel information, 
but it can just as easily display such information from any set of non-local nodes. The PA does this 
without consciously using the network, although that surely is what goes on in the background. The 
PA simply makes a data request for the devices that it wants; for each device, it specifies both the 
node and channel#, bit#, memory address, or other key. Later, it calls for the data that it had re-
quested, and the system furnishes it, waiting, if necessary, for it to arrive via the network. The system 
code does whatever is required to obtain the data and supply it to the PA, which doesn't need to 
know or care whence it came.

Since the early days, many more PAs have been written to perform various system configuration and 
diagnostic functions. The Local Application Page was mentioned earlier. The Clock Event Page dis-
plays clock event activity, showing all 256 possible clock events, updated each cycle. The Download 
Page allows copying of LAs or PAs from one system to another, preserving the version date. It can 
also produce a directory listing of all "files" in a node, or of selected files via a name pattern filter, and 
send it to a given node's serial port. The Page G application allows viewing and control of another 
node's page display. The Ping Page provides a IP Ping client, UDP Echo client, Network Time Proto-
col client, and Domain Name Server client, all useful tools in an Internet Protocol environment.

The Setting Log Page shows time-stamped recent setting activity inside a given node by reading out 
that node's SETLOG data stream queue. The Network Frames Page shows time-stamped recent net-
work frame activity, either received or transmitted, by reading out a target node's NETFRAME data 
stream queue. This PA, sometimes referred to as a "poor man's Sniffer," has proven of immense value 
in tracking down network-related problems. A key feature is that the time-stamps are specified down 
to milliseconds into the cycle, important timing units for a synchronous control system. The Swift 
Commands Page shows the time-stamped recent Swift Digitizer commands by reading out the 
SWFTCMND data stream queue of a target node that has Swift Digitizer hardware.

The Memory Block Page shows allocated blocks of dynamic memory. This is one of the few PAs that 
must execute on the system in question. Simply use Page G to access that system, then invoke its 
Memory Block Page.

Test pages allow exercising the data request protocols supported by the system. The Request Timing 
Page exercises one-shot Classic protocol data requests, building a histogram of the response times. 
Here, local data access is obviously much faster than accessing data from another node. The 
RETDAT/SETDAT Page exercises those two Acnet protocols.

Network support
Network support for an IRM uses Internet Protocols on ethernet. (After all, IRM means Inter-

net Rack Monitor.) Within the system support is also network support for non-IP communications for 
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arcnet. But that support is normally not needed in an IRM. The rest of this section discusses only IP 
on ethernet.

Network support—IP layer
Internet protocols supported by an IRM system include ARP, IP, ICMP, UDP, and IGMP. Via 

local applications, support is provided for TFTP, NTP, and DNS protocols. High-level network com-
munications software in an IRM refers to a node via a 16-bit node#. Since a UDP socket requires 
specification of a 32-bit IP address and a 16-bit port#, a range of pseudo node#s from E000–EFFF is 
used to indirectly specify this information that is mapped via ARP table entries that include an IP ad-
dress, a physical address, and a pointer to a block allocated to hold up to 15 active UDP port#s. In this 
way, the pseudo node# carries the meaning of a UDP socket. 

Each IRM is assigned a node# in the range 05xx–07xx. (This refers to the node itself, not a UDP 
socket.) To obtain the IP address for a given node, say node 0562, the Fermilab Domain Name Server 
is accessed using the name node0562.fnal.gov. (For use elsewhere, an IRM can be configured to 
use a suffix other than fnal.gov.) The local application DNSQ provides this service; it caches the re-
sult in a system table, refreshing each cached entry every 8 hours just to prevent the cached entries 
from becoming stale. The very first time a given node is targeted, since the time the IRM's non-vola-
tile memory was initially configured, the intended transmission will fail, since there was no available 
IP address in the cache. But after the prompt response from the DNS has been cached in the table, that 
target node will always be accessible from that IRM, because it will always have its IP address in the 
cache. This non-volatile table is disturbed neither by system resets nor by power cycles. (The table 
provides some of the functions of a "hosts" file on a workstation.) An entry can also be installed 
statically so that the DNS is not consulted to refresh it, especially useful for IRMs that are off-site.

Knowing an IP address of a node to be targeted is not enough to communicate with it; its 6-byte 
physical network address must be obtained as well. This is done using ARP (Address Resolution Pro-
tocol). If an ARP table entry is not currently active, an ARP request is sent to learn the physical ad-
dress. Upon receipt of the ARP reply, queued messages are formed into frames for delivery. While 
awaiting an ARP reply, network communication with other nodes is not impeded.

Included with IP is support for ICMP (Internet Control Message Protocol). This supports the "ping" 
request commonly used to query a node's presence on the network. Another important ICMP mes-
sage is one that means "port unreachable." If this message is received, the system automatically can-
cels replies for all data requests that originate from the node/port (socket) referred to as unreachable.

The Internet Group Message Protocol, or IGMP, is used to support IP multicasting. A multicast 
router, for each network to which it connects, sends an IGMP request every minute to the "all hosts" 
IP multicast address that is supported by all nodes that participate in IP multicasting. Each node that 
sees this request schedules, randomly over the next 10 seconds, an IGMP reply for each IP multicast 
address in which it has an interest. This reply is targeted to the same IP multicast address. The router 
is able to receive all such multicast replies. If a node receives such a multicast reply from another 
node, however, it will cancel its intention to send that same reply. In this way, only minimal network 
activity is required to keep a router informed of IP multicast interest on the part of all nodes on a net-
work. (The router doesn't care which nodes have an interest in a given IP multicast address, only that 
at least one has such interest.)

The User Datagram Protocol, or UDP, is the support that carries data request and alarm messages. It 
provides the same service as IP, but with the addition of a port#, so that a UDP port in one node can 
send a message to UDP port in another node. For some protocols, port#s have been standardized, in-
cluding ECHO (UDP Echo Protocol), TFTP (Trivial File Transfer Protocol), NTP (Network Time Pro-
tocol), and DNS (Domain Name Service) protocol. Local or page applications can be designed as UDP 
protocol clients or servers. The IRM systems use fixed UDP port#s for the data request and alarm pro-
tocols they support. All Classic protocol messages target UDP port# 6800. All Acnet protocols target 
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port# 6801. Acnet protocol support includes an additional layer that allows server support of a spe-
cific Acnet protocol via a local application.

Network support—messages
Network support software for applications is organized around messages, not frames. Mes-

sages are queued to a network, which means a pointer to an allocated message block is placed in a 
queue associated with that network. When the network queue is flushed, all queued messages are for-
matted into frames as required, without altering the order of messages in the queue. If consecutive 
messages that target the same node# are of the same type, say Classic protocol, they can be combined 
into common datagrams as long as they will fit in the 9000-byte maximum size datagram that is sup-
ported, chosen so that one can include 8192 bytes of data in one message and then some. Of course, a 
datagram so large requires fragmentation, given the 1500-byte frame size limit of ethernet, so that 
support for fragmentation of outgoing datagrams and reassembly of incoming datagrams is included 
in IP support. If a program uses the network to send a datagram explicitly, say to issue a Ping request, 
the datagram is taken as a single message that cannot be combined with another. Message coalescing 
occurs when consecutive Classic or Acnet messages in the network queue target the same node. 
Maintaining the linked list of active request blocks ordered by target node# increases the likelihood of 
this happening, so that it is quite a common occurrence when multiple requests are active in a 
node—especially when a server node is used to forward the request messages to target node(s). (Note 
that the node#s targeted via IP are really pseudo node#s that specify an IP socket. This means that 
multiple UDP ports from a host node do not use the same target node#.) The message coalescing 
scheme allows the IRM to support a large number of active requests simultaneously and makes it eas-
ier on the host end, because the host doesn't have to receive so many datagrams. IRM client applica-
tions do not have to worry about this logic; it is supported by the underlying system automatically.

Data request protocols of two basic types are supported, each based upon UDP. In each case, the mes-
sage types include data requests, data replies, setting requests, and alarm messages. Any of the mes-
sage types may occur within the same datagram, as described above. The Classic protocol is the origi-
nal network protocol supported by the system and is required in order to achieve full functionality 
with page applications. In fact, support for the Classic protocol is a major reason for the IRM's port-
ability to non-Acnet control systems. The Acnet protocols are supported because they are required to 
serve the needs of the Fermilab accelerator control system. For both data request protocols, server 
support is provided. That means a node may receive a request for data that includes not only local 
device data, but device data that resides in other nodes. Server support arranges to forward the re-
quest to other nodes, using multicast addressing when appropriate, and upon receiving replies, build 
a composite reply for delivery to the original requester. The requesting node simply receives a reply 
to the data that was requested, without caring what node(s) actually sourced the data. For a project 
consisting of a dozen nodes, say, this can greatly reduce the number of datagrams a host must re-
ceive, especially when data requests ask for replies to be delivered at 10–15 Hz. Any IRM can provide 
server support for any request; all run the same system software, so they all know how to do it.

Diagnostics
One diagnostic tool is the Macintosh Parameter Page. As a Classic protocol client, it provides 

basic parameter page support. It also supports plots of device data and memory data, 1 KHz A/D 
data, an alarm display, and a Page G client.

A generally useful diagnostic has been the Memory Dump Page application discussed earlier. While 
it provides a view inside the memory of a running system, so that software problems can be diag-
nosed, it has also been useful for hardware diagnostics during development of a new board. Display-
ing memory data updated every cycle, accessed either by bytes or words, it also supports copying 
blocks of memory from any node to any node. Many particular areas in memory can be monitored, 
including task-related variables for each task as well as the contents of various system tables, both 
static and dynamic. One has an inside view of what's going on in the system.
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In a sense, all the page applications provide diagnostic or configuration support. If a problem arises 
in an analog channel, the Parameter Page application allows another view of accessing that channel 
independent of any host software. The Analog Page application shows all the fields in the local data-
base for the channel and allows them to be changed as needed. The Clock Event Page shows what 
clock events are occurring. The Download Page helps in assembling the programs stored in the non-
volatile memory file system. The Local Application Page is used to configure the arguments for all the 
local applications. It also shows the pointer to the executing LA's context memory, so that one can 
view such memory on the Memory Dump Page to understand how things look from the LA's point-
of-view; in fact, when writing an LA, it may be useful to include diagnostics with this in mind. The 
Network Frame Page allows the capture of network frame activity diagnostics. Frame contents can 
also be captured with this page to check that a data request protocol, say, is formed correctly. The 
Page G emulator gains access to a remote station to execute and view a page application on that node. 
Normal IP diagnostics for ICMP ping, UDP Echo, Network Time, and Domain Name Server are avail-
able from another page. One can view the internal allocated (volatile) blocks of memory to check for 
blocks that were not freed. The Setting Log Page views recent setting activities. Data request protocols 
can be exercised for both Classic and Acnet protocols, including evaluating response time.

Lower-level diagnostics are available for capturing evidence of how a station died as a result of an 
unexpected exception, such as a bus error. Connecting an IRM to a terminal emulator, one can use the 
162bug monitor program to display memory and disassemble 68K instructions in the event of a ma-
jor crash, in order to determine what caused the crash. Fortunately, this seldom happens.

Hardware diagnostics are available via the task LEDs and interrupt routine LEDs on the front panel 
of an IRM. An LED is on during the execution of each task. An LED is on during the execution of each 
interrupt routine. Using a logic state analyzer, one can get accurate timing and sequencing informa-
tion for all these activities. Task activities and interrupt activities together cover about all there is that 
goes on inside an IRM. These traces allow one to see first hand how well the IRM front end operates 
in strict real-time.

IRM Software has been used in a number of projects, especially at Fermilab. The latest major effort 
was porting the system to the PowerPC processor on the MVME-2401 CPU board. Many other notes 
describe this effort more fully. The system code was rewritten in C by Bob Peters and adapted to the 
VxWorks operating system kernel. The resulting system now supports the Fermilab Linac control sys-
tem. Both the PowerPC and MC68040-based IRM versions of the system are largely compatible and 
support the same features originally described here in 1997. Since that time, both have been enhanced 
in a number of ways, about which many other notes have been written. At this writing in June 2003, 
there are about 164 nodes running the system software, including 40 PowerPC nodes.
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